A new estimator for population mean using two auxiliary variables in stratified random sampling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimator of a Population Mean Using Two Auxiliary Variables in Simple Random Sampling

We propose a new ratio estimator using two auxiliary variables in simple random sampling. We obtain mean square error (MSE) equation of this estimator and theoretically show that our proposed estimator is more efficient than the traditional multivariate ratio estimator under a defined condition. In addition, we support this theoretical result with the aid of a numerical example.

متن کامل

A New Exponential Type Estimator for the Population Mean in Simple Random Sampling

‎In this paper‎, ‎a new estimate of exponential type of auxiliary information to help simple random sampling without replacement of the finite population mean is introduced‎. ‎This new estimator with a few other estimates using two real data sets are compared with the mean square error‎.

متن کامل

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

In this paper exponential ratio and exponential product type estimators using two auxiliary variables are proposed for estimating unknown population variance y S . Problem is extended to the case of two-phase sampling. Theoretical results are supported by an empirical study.

متن کامل

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling

This study proposes improved chain-ratio type estimator for estimating population mean using some known values of population parameter(s) of the second auxiliary character. The proposed estimators have been compared with two-phase ratio estimator and some other chain ratio type estimators. The performances of the proposed estimators have been supported with a numerical illustration.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information and Optimization Sciences

سال: 2017

ISSN: 0252-2667,2169-0103

DOI: 10.1080/02522667.2017.1383702